金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

小学数学游戏-缺失的数字

来源:学大教育     时间:2015-03-14 15:59:03


我们都知道许多生动有趣的游戏中其实蕴含着许多丰富的人生哲理,小学生正处于大量学习的阶段,多玩一些益智游戏可以帮助同学们更好地成长。针对这一现象,我们学大教育专家为大家带来了小学数学游戏-缺失的数字,希望可以给同学们带来一定的启示。

在下面这个加法算式中,每个字母代表0~9的一个数字,而且不同的字母代表不同的数字。

AB

CD

EF

+GH

————

III

请问缺了0~9中的哪一个数字?

(提示:I必定代表哪个数字?)答 案

由于每一列都是四个不同的数字相加,所以一列数字加起来得到的

和最大为9+8+7+6,即30。由于I不能等于0,所以右列向左列的进位不能大于2。由于向左列的进位不能大于2,所以I(作为和的首位数)不能等于3。于是I必定等于1或2。

如果I等于1,则右列数字之和必定是11或21,而左列数字之和相应为10或9。于是,

(B+D+F+H)+(A+C+E+G)+I=10+10+1=22,

或者

(B+D+F+H)+(A+C+E+G)+I=21+9+1=31。

但是,从1到9到这十个数字之和是45,而这十个数字之和与上述两个式子中九个数字之和的差都大于9。这种情况是不可能的。因此I必定等于2。

既然I等于2,那么右列数字之和必定是12或22,而左列数字之和相应为21或20。于是,

(B+D+F+H)+(A+C+E+G)+I=12+21+2=35,

或者

(B+D+F+H)+(A+C+E+G)+I=22+20+2=45。

这里第一种选择不成立,因为那十个数字之和与式子中九个数字之和的差大于9。因此缺失的数字必定是1。

至少存在一种这样的加法式子,这可以证明如下:按惯例,两位数的首位数字不能是0,所以0只能出现于右列。于是右列其他三个数字之和为22。这样,右列的四个数字只有两种可能:0、5、8、9(左列数字相应为3、4、6、7),或0、6、7、9(左列数字相应为3、4、5、8)。显然,这样的加法式子有很多。

小学数学游戏-缺失的数字,在上面文章中我已经进行了详细的整理,希望大家在玩耍的过程中,可以帮助大家得到一些关于数学学习的启发。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956