金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

初二数学探索多边形内角和教案

来源:学大教育     时间:2015-03-19 16:18:59


我们都知道事先进行课件的设计不仅能够帮助老师们更好地把握课堂、传授知识,还能帮助同学们更加容易理解与接受老师所讲授的内容,我们学大教育专家为大家带来了初二数学探索多边形内角和教案,希望不仅能够拓宽老师授课思路,还能帮助同学们学习。

教学过程 :

一、引入:

1、出示多媒体投影片或出示事物图:正方形石英钟、五边形(广场图)、六变形螺母、八边形。

2、给出多边形概念:多边形的顶点、边、内角和、对角线及其有关概念。

二、多边形内角和公式:

1、三角形的内角和是多少度?任意四边形的内角和是多少度?怎样得到的?那么五边形的内角和怎样求呢?要求学生剪纸或画图找出五边形可剪成多少个三角形求内角和?六边形可怎样剪成三角形?n边形呢?

2、学生讨论:在剪纸及画图活动中充分的探索、交流、体会,先独立思考,然后小组讨论、交流,发表不同见解。探索五边形内角和的不同方法:(学生可能得出如图一、图二、图三中的不同方法)

(1)量出每个内角度数然后相加为540°;

(2)从五边形的任一顶点出发,连结不相邻的两个顶点,将五边形分割成三个三角形,得出五边形内角和为540°(如图一);

(3)在五边形内任取一点,连结各顶点,将五边形分割成五个三角形,得出五边形内角和为5×180°-360°=540°(如图二);

(4)从五边形任意一边上取一点,连接不相邻的顶点,将五边形分割成四个三角形内角和为4×180°-180°=540°(如图三);

(5)六边形可怎样剪成三角形求内角和?n边形呢?

(6)总结规律:多边形内角和为(n-2)×180°(n≥3)。

3、议一议:

(1)过四边形一个顶点的对角线把四边形分成两个三角形;

(2)过五边形一个顶点的对角线把五边形分成( )个三角形;

(3)过六边形一个顶点的对角线把六边形分成( )个三角形。

(4)过n边形一个顶点的对角线把n边形分成( )个三角形;

二、正多边形定义:

1、 出示课本第109页想一想图:(思考,图中的多边形各是几边形,它们的边和角有什么特点)

2、多边形定义:在平面内,内角都相等,边也相等的多边形是正多边形。

3、填表:

正多边形的边数

3

4

5

6

8

n

正多边形的内角和

180°

360°

540°

720°

1080°

正多边形每个内角的度数

60°

90°

108°

120°

135°

四、小结:主要表扬本节课同学们很善于思考,对所学知识应用得很好,做得好的小组及他们做得好的地方。

五、布置作业 :

课本P110、习题4、10 第1、2、3题。

附:选用随堂练习:

1、一个多边形的每个内角都是140º,它是( )边形?

2、过四边形一顶点的对角线把它分成两个三角形,过五边形一个顶点的对角线把它分成( )个三角形。

3、过六边形的一个顶点的对角线把它分成( )个三角形,过n边形的一个顶点的对角线把n边形分成( )个三角形。

4、一个多边形的每个内角都是140°,这个多边形是( )边形。

5、如果一个多边形的边数增加1,那么这时它的内角和增加了( )度。

6、下列角能成为一个多边形的内角和的是( )

A、270° B、560° C、1800° D、1900°

思考题:如图(1),求∠A+∠B+∠C+∠D+∠E+∠F等于多少度?

如图(2),求∠A+∠B+∠C+∠D+∠E+∠F+∠G等于多少

初二数学探索多边形内角和教案,在上面文章中我已经进行了详细的分析整理,希望能对老师的授课,同学的学习起到一定的帮助作用。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956